FIZYKOCHEMICZNE METODY BADAWCZE W NANO- I BIOTECHNOLOGII

PODSTAWY TEORETYCZNE I ĆWICZENIA PRAKTYCZNE

REDAKCJA NAUKOWA MAREK SZKLARCZYK

FIZYKOCHEMICZNE METODY BADAWCZE W NANO- I BIOTECHNOLOGII

Praca zbiorowa pod redakcją

dr hab. Marka Szklarczyka

Autorzy

prof. dr hab. Karol Jackowski dr Agata Królikowska prof. dr hab. Paweł Krysiński dr Anna Makowska dr hab. Barbara Pałys dr hab. Magdalena Pecul-Kudelska dr hab. Marek Pękała dr Kamil Polok dr Agnieszka Siporska dr Marcin Strawski dr hab. Marek Szklarczyk dr Jadwiga Szydłowska

FIZYKOCHEMICZNE METODY BADAWCZE W NANO- I BIOTECHNOLOGII

PODSTAWY TEORETYCZNE I ĆWICZENIA PRAKTYCZNE

REDAKCJA NAUKOWA MAREK SZKLARCZYK

Warszawa 2015

Recenzenci Prof. dr hab. Jolanta Bukowska Prof. dr hab. Andrzej Sobkowiak

Redaktor prowadzący Małgorzata Yamazaki

Redakcja i korekta Małgorzata Galus

Projekt okładki i stron tytułowych Wojciech Markiewicz

Skład i łamanie Marcin Szcześniak

Ilustracje na okładce

Na górze: mapa ramanowska tabletki leku pokazująca rozkład jego składników [za zgodą Horiba Scientific, Raman Application Laboratory, Francja]; na dole: zakresy widma promieniowania elektromagnetycznego oraz odpowiadająca im zmienna długość fali (autor: Marek Szklarczyk)

ISBN 978-83-235-1894-5 (PDF)

© Copyright by Wydawnictwa Uniwersytetu Warszawskiego, Warszawa 2015

Publikacja dofinansowana z projektu nr POKL.04.01.01-00-100/10 "Chemia, fizyka i biologia na potrzeby społeczeństwa XXI wieku: Nowe makro kierunki studiów I, II i III stopnia" w Priorytecie IV PKOL

Wydawnictwa Uniwersytetu Warszawskiego 00-497 Warszawa, ul. Nowy Świat 4 www.wuw.pl, e-mail: wuw@uw.edu.pl Księgarnia internetowa: www.wuw.pl/ksiegarnia

Wydanie 1

Spis treści

Przedmowa		13
Rozdział 1.	Skaningowa mikroskopia tunelowania i mikroskopia sił atomowych Marek Szklarczyk	15
CZĘŚĆ TEOF 1.1. Technika S	RETYCZNA TM. Efekt tunelowania	16
1.2. Technika A	AFM	19
1.3. Zastosowa 1.3.1. Tech 1.3.2. Tech	nie i oprzyrządowanie technik STM i AFMnika STMnika AFM	20 21 22
CZĘŚĆ DOŚW	VIADCZALNA	
1.4. Wykonanie	e ćwiczenia	24
1.5. Opracowa	nie wyników	24
Wymagani Literatura	a do kolokwium	25 25
Rozdział 2.	Mapowanie i obrazowanie ramanowskie przy użyciu mikroskopii konfokalnej <i>Agata Królikowska</i>	26
CZEŚĆ TEOF	RETYCZNA	
2.1. Zjawiska r	ozpraszania Rayleigha i Ramana	26

 2.2. Lasery jako źródło wzbudzenia w spektroskopii Ramana 2.3. Budowa spektrometru ramanowskiego i idea mikroskopii konfokalnej 2.4. Mapowanie i obrazowanie ramanowskie i ich wykorzystanie w analizie leków 2.4.1. Wstęp 		29 34 38 38
2.4.2. Zasa 2.4.3. Rozo 2.4.4. Anal	da pomaru Izielczość mapy ramanowskiej liza mapy ramanowskiej	38 40 41
CZĘŚĆ DOŚW	VIADCZALNA	
2.5. Wykonanie	e ćwiczenia	43
2.6. Opracowai	nie wyników	44
Literatura		44 44
Rozdział 3.	Spektroskopia odbiciowa w podczerwieni Barbara Pałys	46
CZEŚĆ TEOR	RETYCZNA	
3.1. Metoda ze	wnętrznego odbicia	46
3.2. Metoda we	wnętrznego odbicia	49
3.3. Polimery p	przewodzące	51
CZĘŚĆ DOŚW	VIADCZALNA	
3.4. Wykonanie	e ćwiczenia	55
3.5. Opracowai	nie wyników	55
Wymagani Literatura	a do kolokwium	55 56
Rozdział 4.	Spektroskopia paramagnetycznego rezonansu	
	elektronowego Jadwiga Szydłowska	57
CZĘŚĆ TEOR	RETYCZNA	
4.1. Moment m	hagnetyczny elektronu – orbitalny i spinowy	58
4.2. Energia di	pola magnetycznego w polu magnetycznym	59
4.3. Kwantowa	nie energii elektronu w polu magnetycznym	60
4.4. ∠jawisko r 4.5 Tensor a	ezonansu magnetycznego	01 61
4.6. Próbka pro)szkowa	62
4.7. Próbka izo	tropowa	63
4.8. Operator s	pinu i hamiltonian	63
4.9. Oddziaływa	anie nadsubtelne	64
4.10. Widmo p	róbek izotropowych	66

CZEŚĆ DOŚWIADCZALNA	
4.11. Wykonanie ćwiczenia	70
4.12. Opracowanie wyników	72
Wymagania do kolokwium	72
Literatura	72
UZUPEŁNIENIE	
4.13. Podstawowe wielkości występujące w opisie zjawiska EPR	73
4.13.1. Iloczyn skalarny i wektorowy	73
4.13.2. Moment pędu, moment magnetyczny, energia dipola w polu	
magnetycznym	73
4.13.3. Wartości własne i funkcje własne operatora – przykłady	74

Rozdział 5.	Luminescencja	75
	Marcin Strawski	

CZĘŚĆ TEORETYCZNA

5.1. Fotoluminescencja	. 76
5.2. Elektroluminescencja	. 77
5.3. Elektronoluminescencja (katodoluminescencja)	. 80
5.4. Chemiluminescencja (bioluminescencja i elektrochemiluminescencja)	. 81
5.5. Inne rodzaje luminescencji	. 82
5.6. Powlekanie obrotowe	. 83

CZĘŚĆ DOŚWIADCZALNA

5.7.	Wykonanie ćwiczenia	85
	5.7.1. Charakterystyka diod elektroluminescencyjnych	85
	5.7.2. Wpływ nanomateriałów na chemiluminescencję luminolu	85
	5.7.3. Budowa urządzenia elektrochemiluminescencyjnego	86
5.8.	Opracowanie wyników	87
	Wymagania do kolokwium	87
	Literatura	87

Rozdział 6.	Ekranowanie w spektroskopii magnetycznego rezonansu	
	jądrowego	89
	MINT SUCKOWSKI	

CZĘŚĆ TEORETYCZNA	
6.1. Podstawa spektroskopii NMR	89
6.2. Magnetyczne ekranowanie jąder atomowych	91
6.3. Przesunięcie chemiczne	92
6.4. Pomiar magnetycznego ekranowania jąder	93

CZĘŚĆ DOŚW	IADCZALNA	
6.5. Wykonanie	ćwiczenia	95
6.6. Opracowan	ie wyników	96
Wymagania	do kolokwium	97
Literatura		97
Rozdział 7.	Praca adhezji – pomiar kąta zwilżania Paweł Krysiński	98
CZĘŚĆ TEOR	ETYCZNA	
7.1. Praca zmian	ny powierzchni, napięcie powierzchniowe międzyfazowe	100
7.2. Praca kohez	zji i adhezji	101
7.3. Zwilżanie i	zwilżalność	102
7.4. Kąt zwilżan	ia	103
7.5. Krytyczne r	napięcie powierzchniowe ciała stałego, wykres Zismana	106
CZĘŚĆ DOŚW	IADCZALNA	
7.6. Wykonanie	ćwiczenia	108
7.7. Opracowan	ie wyników	109
Wymagania	do kolokwium	109
Literatura		109
UZUPEŁNIEN	IE	
7.8. Podstawy el	ipsometrii	109
Rozdział 8.	Ciecze jonowe	115
	Annu mukowska	
CZĘŚĆ TEOR	ETYCZNA	447
8.1. Budowa cie	czy jonowych	117
8.2. Własciwosc		11/
8.2.1. Gęsto)SC	118
8.2.2. Lepk	OSC	118
8.2.3. Przew	/odnictwo elektrolityczne	120
8.2.4. Okno	elektrochemiczne	122
8.2.5. Pozos	state właściwości	123
8.3. Otrzymywa	nie tetrafiuoroboranow 1-aikilo-3-metyloimidazoliowych	100
		123
o.4. wpiyw zani	ie cioczy ionowych	124
o.J. ∠astosowan		123
CZĘŚĆ DOŚW	IADCZALNA	
8.6. Wykonanie	ćwiczenia	126

	8.6.1. Pomiary lepkości	126
8.7.	8.6.2. Pomiary przewodnictwa	126
	8.6.3. Pomiary gęstości w wybranych temperaturach	127
	Opracowanie wyników	127
	Wymagania do kolokwium	128
	Literatura	128

Rozdział 9.	Roztwory polimerów	129
	Agnieszka Siporska	

CZĘŚĆ TEORETYCZNA

9.1. Budowa przestrzenna polimerów	. 129
9.2. Metody wydłużania i skracania łańcucha	. 130
9.3. Masa cząsteczkowa polimerów	. 132
9.4. Polistyren	. 134
9.5. Rozpuszczanie polimerów	. 135
9.6. Równowagi fazowe	. 136
9.6.1. Termodynamika układów z luką mieszalności	. 136
9.6.2. Rodzaje rozpuszczalników	. 139
9.6.3. Diagramy z pętlą o ograniczonej mieszalności	. 141
9.6.4. Punkt krytyczny i równanie skalujące	. 142

CZĘŚĆ DOŚWIADCZALNA

9.7.	Wykonanie ćwiczenia	143
	9.7.1. Obserwacja procesu rozpuszczania polimeru	143
	9.7.2. Wyznaczanie diagramów fazowych	144
	9.7.3. Obliczanie parametrów krytycznych	145
9.8.	Opracowanie wyników	145
	Wymagania do kolokwium	145
	Literatura	145

Rozdział 10.	Termomagnetyczna analiza ciał stałych	147
	Marek Pękała	

CZĘŚĆ TEORETYCZNA

10.1. Moment magnetyczny	147
10.2. Trzy wektory magnetyczne	151
10.3. Przenikalność i podatność magnetyczna	153
10.4. Materiały magnetyczne	154
10.5. Magnetyczne metody pomiarowe	157
10.6. Waga Faradaya	158

CZĘŚĆ DOŚWIADCZALNA

10.7. V	Wykonanie ćwiczenia	160
1	10.7.1. Pomiary	160
1	10.7.2. Obliczenie namagnesowania masowego i podatności masowej	161
10.8. 0	Opracowanie wyników	162
1	10.8.1. Namagnesowanie masowe i podatność masowa w temperaturze	
	pokojowej	162
1	10.8.2. Faza ferromagnetyczna	162
1	10.8.3. Faza paramagnetyczna	163
1	10.8.4. Sprawozdanie	163
V	Wymagania do kolokwium	164
Ι	Literatura	164

UZUPEŁNIENIE

10.9. Jednostki magnetyczne	 165
10.9. Jednostki magnetyczne	 105

Rozdział 11. Elektrooptyczny i optycznooptyczny efekty Kerra 167 *Kamil Polok*

CZĘŚĆ TEORETYCZNA

11.1.	Wstęp	167
11.2.	Podstawy	169
	11.2.1. Detekcja homodynowa	171
11.3.	Elektryczny efekt Kerra	172
	11.3.1. Wpływ pola pompującego na próbkę	173
	11.3.2. Związek orientacji cząsteczek i dwójłomności próbki	175
11.4.	Optyczny efekt Kerra	176
	11.4.1. Składowe sygnału	177
	11.4.2. Funkcja odpowiedzi a sygnał dla niezerowego czasu trwania impulsu	183
	11.4.3. Detekcja heterodynowa	184

CZĘŚĆ DOŚWIADCZALNA

11.5.	Wykonanie ćwiczenia	185
	11.5.1. Elektryczny efekt Kerra	185
	11.5.2. Optyczny efekt Kerra	186
11.6.	Opracowanie wyników	186
	11.6.1. Elektryczny efekt Kerra	186
	11.6.2. Porównanie efektu orientacyjnego w optycznym i elektrycznym	
	efekcie Kerra	187
	11.6.3. Optyczny efekt Kerra w CCl ₄ i CHCl ₃	187
	11.6.4. Analiza wpływu temperatury na sygnały kerrowskie CCl_4 i C_2Cl_4	188
	Wymagania do kolokwium	189
	Literatura	189

Rozdział 12.	Modelowanie nieliniowych właściwości optycznych Magdalena Pecul-Kudelska	190
CZĘŚĆ TEORI	ETYCZNA	
12.1. Właściwoś	ci molekularne związane z polem elektrycznym	191
12.1.1. Trw	rały moment dipolowy	191
12.1.2. Trw	vały moment kwadrupolowy	192
12.1.3. Pol	aryzowalność	193
12.1.4. Hip	perpolaryzowalność	195
12.2. Spektrosko	ppia chiralooptyczna	195
12.2.1. Dic	hroizm kołowy	196
12.2.2. Skr	ęcalność optyczna i dyspersja skręcalności optycznej	197
CZEŚĆ DOŚW	IADCZALNA	
12.3. Wykonanie	e ćwiczenia	200
12.4. Opracowai	nie wyników	200
Wymagani	a do kolokwium	200
Literatura		201
Rozdział 13	Spektrometria mas jonów wtórnych	202
Kozuziui 13.	Marcin Strawski	202
CZĘŚĆ TEORI	ETYCZNA	
13.1. Wstęp		202
13.2. Jonizacja		204
13.3. Transport		204
13.4. SIMS jako	technika badania powierzchni	205
13.5. Budowa sp	bektrometru mas jonów wtórnych z analizatorem czasu przelotu	206
13.6. Możliwośc	i analityczne SIMS	209
CZĘŚĆ DOŚW	IADCZALNA	
13.7. Wykonanie	e ćwiczenia	214
13.8. Opracowar	nie wyników	214
Wymagani	a do kolokwium	214
Literatura		214
~		
Rozdział 14.	Spektroskopia totoelektronów Marek Szklarczyk, Marcin Strawski	215
CZĘŚĆ TEORI	ETYCZNA	
14.1. Wstęp		215
14.2. Zjawisko f	otoelektryczne i energia fotoelektronów	216
14.3. XPS jako 1	echnika badania powierzchni	218

14.4. Budowa spektrometru XPS	220
14.5. Możliwości analityczne XPS	221
CZĘŚĆ DOŚWIADCZALNA	
14.6. Wykonanie ćwiczenia	227
14.7. Opracowanie wyników	227
Wymagania do kolokwium	227
Literatura	227
Skorowidz	228

Przedmowa

Jednymi z najbardziej dynamicznie rozwijających się dziedzin nauki i przemysłu są nanotechnologia i biotechnologia. Możliwość wzięcia udziału w rozwoju tych dziedzin zależy od umiejętności wyboru i stosowania najnowszych technik spektroskopowych i mikroskopowych. Zamierzeniem autorów niniejszej książki było przygotowanie opracowania podstaw tych nowych technik badawczych zarówno dla studentów, jak i dla pracowników naukowych. Każdy z czternastu rozdziałów tej książki zawiera obszerne wprowadzenie teoretyczne zapewniające opanowanie podstawowych zagadnień potrzebnych do posługiwania się daną techniką, następnie przedstawiony jest opis wykonywania pomiarów oraz sposób interpretacji wyników. Zebranie tak obszernego materiału w jednej książce zapewni Czytelnikowi szybkie zapoznanie się z różnymi zagadnieniami i technikami pomiarowymi.

W skrypcie opisana jest tematyka realizowana w ramach Pracowni Nowych Materiałów na Wydziale Chemii Uniwersytetu Warszawskiego. Obejmuje ona zastosowanie najnowszych technik doświadczalnych mikroskopowych i spektroskopowych oraz modelowania komputerowego w takich dziedzinach, jak chemia powierzchni, właściwości i synteza nanomateriałów nieorganicznych i organicznych, charakterystyka farmaceutyków oraz cieczy jonowych.

Na końcu każdego rozdziału przedstawiony jest spis pozycji literaturowych pomocnych w przygotowaniu przedstawionego materiału oraz polecanych dla osób, które chciałyby poszerzyć wiedzę dotyczącą danej tematyki.

Autorzy dziękują Panu prof. dr hab. Robertowi Moszyńskiemu za podjęcie decyzji o sfinansowaniu wydania niniejszej książki ze środków projektu nr POKL.04.01.01-00-100/10 "Chemia, fizyka i biologia na potrzeby społeczeństwa XXI wieku: nowe makro kierunki studiów I, II i III stopnia" w Priorytecie IV POKL, program "Kapitał ludzki".

1

Skaningowa mikroskopia tunelowania i mikroskopia sił atomowych

Marek Szklarczyk

Technika skaningowej mikroskopii tunelowania (ang. *Scanning Tunneling Microscopy*, STM) oraz siostrzana technika skaningowej mikroskopii sił atomowych (ang. *Atomic Force Microscopy*, AFM) są technikami, które ze względu na łatwość ich zastosowania i rodzaj uzyskiwanych informacji zyskały popularność niezwykle szybko. Od chwili ich zaproponowania (lata 1983–1986) do dzisiaj powstało wiele technik pochodnych. Obecnie do dyspozycji jest około 40 pochodnych technik zarówno mikroskopowych jak i spektroskopowych. Informacje, które za ich pomocą można uzyskać, są zarówno natury atomowej, jak i makroskopowej. Są to informacje dotyczące właściwości kwantowych (efekt tunelowania, stojące fale elektronowe, szerokość pasm wzbronionych), oddziaływań międzyatomowych i międzycząsteczkowych, potencjałów powierzchniowych, sił tarcia międzyatomowego, nanoprzewodnictwa, oddziaływań magnetycznych, lepkości, czy też składu chemicznego (spektroskopia tunelowania). Techniki te umożliwiają również uzyskiwanie informacji dotyczących morfologii i geometrii powierzchni na poziomie zarówno atomowym, jak i makroskopowym.

CZĘŚĆ TEORETYCZNA

Skonstruowanie mikroskopów STM i AFM było możliwe na podstawie teorii efektu tunelowania oraz teorii oddziaływań międzyatomowych.

1.1. Technika STM. Efekt tunelowania

Na rysunku 1.1 przedstawiono dwie możliwości przepływu pradu elektrycznego, czyli przepływu elektronów pomiędzy dwoma obiektami – jedna jest zgodna z fizyką klasyczną (linie niebieskie), a druga zgodna z fizyką kwantową (linie czerwone). Zgodnie z fizyką klasyczną, makroskopową, między dwoma obiektami istnieje bariera energetyczna uniemożliwiająca przejście elektronów, czyli przepływ prądu. Przejście takie można wymusić tylko wtedy, gdy do układu zostanie dostarczona energia równa wysokości bariery (rys. 1.1, linia niebieska), na przykład przez przyłożenie potencjału elektrycznego przynajmniej do jednego z obiektów. Prace Gamova, Gurneya i Condona nad emisją promieniowania β oraz Fowlera i Nordheima nad emisją elektronu w polu elektrycznym w latach dwudziestych ubiegłego wieku, wykorzystujące teorię kwantów Plancka, wykazały, że na poziomie atomowym możliwe jest przejście elektronu pomiędzy dwoma obiektami, jeśli spełnione zostana pewne warunki. Warunki te to odpowiednie odległości pomiędzy obiektami oraz istnienie poziomów zapełnionych i pustych o odpowiedniej energii. Odpowiednie spełnienie tych warunków może umożliwić przepływ elektronów o energii niższej niż wysokość bariery energetycznej. Można więc powiedzieć, że elektrony moga, oczywiście z określonym prawdopodobieństwem, tunelować przez barierę energetyczną (rys. 1.1, linie czerwone). Efekt ten nazywany jest efektem tunelowania i jest podstawą mikroskopii i spektroskopii tunelowania. Prawdopodobieństwo jego wystąpienia jak i przepływu elektronów można określić analizując ich funkcje falowe.

Rys. 1.1. Możliwe drogi przepływu elektronów: linie niebieskie zgodne z fizyką klasyczną, linie czerwone zgodne z fizyką kwantową. φ_1 i φ_2 oznaczają prace wyjścia elektronu z danego materiału, E_F – poziom Fermiego, *s* – szerokość bariery, *V* – wysokość bariery, *x* – odległość

Zgodnie z fizyką kwantową w przedstawionym na rys. 1.1 układzie można zaobserwować dwa obszary różnie usytuowane w stosunku do powierzchni (x = 0): obszar o x < 0, czyli w materiale, oraz obszar o x > 0, czyli obszar bariery. Funkcję elektronową w tych obszarach można określić przez dyskusję dwóch równań Schrödingera w których hamiltonian (H) ma postać:

1) w materiale, x < 0

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$
(1.1)

2) w obszarze bariery, x > 0

$$H = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V \tag{1.2}$$

przy czym \hbar jest stałą Plancka podzieloną przez 2π , m – masą elektronu, a V – wy-sokością bariery.

Rozwiązaniem równania dla elektronu o energii E w materiale jest funkcja falowa

$$\Psi = A e^{ikx} + B e^{-ikx}, \quad \text{gdzie } k = 2mE/\hbar^2$$
(1.3)

Rozwiązaniem równania dla elektronu o energi
iEw obszarze barieryV jest funkcja

$$\Psi = Ce^{ikx} + De^{-ikx}, \quad \text{gdzie } k' = [2m(E - V)/\hbar^2]^{1/2}$$
 (1.4)

Stosując zależności

$$Ze^{i\alpha} = Z(\cos \alpha + i\sin \alpha) \tag{1.5}$$

oraz

$$Ze^{-i\alpha} = Z(\cos \alpha - i\sin \alpha) \tag{1.6}$$

można dowieść, że funkcja Ψ , w obszarze bariery, ma dwie składowe:

1) **urojoną**, rosnącą do nieskończoności, którą można zaniedbać;

2) **rzeczywistą**, która zmniejsza się eksponencjalnie. Oznacza to, że w obszarze bariery, gdzie zgodnie z fizyką klasyczną penetracja elektronu jest wzbroniona nawet dla E < V, mechanika kwantowa przewiduje niezerowe prawdopodobieństwo znalezienia elektronu. Przez barierę może więc popłynąć strumień elektronów (prąd) niosących jakieś informacje (wartości energii i pędu). Ta możliwość jest podstawą mikroskopii tunelowania STM.

Prawdopodobieństwo tunelowania elektronu o energii E przez barierę pomiędzy dwoma obiektami o pracach wyjścia φ_1 i φ_2 można przedstawić następująco:

$$P = \frac{16E(\varphi - E)}{\varphi^2} e^{-2|\chi|s}$$
(1.7)

przy czym

$$\chi = \sqrt{2m(\varphi - E)/\hbar^2}$$
(1.8)

oraz

$$\varphi = \frac{\varphi_1 + \varphi_2}{2} \tag{1.9}$$

Jeśli szerokość bariery energetycznej s jest odpowiednio mała, rzędu subnanometrów, to

$$|\chi| \cdot s \gg 1 \tag{1.10}$$

czyli prawdopodobieństwo przepływu prądu jest większe od zera przy bardzo małej szerokości bariery energetycznej oraz odpowiednich wartościach pracy wyjścia elektronu, φ i φ_2 , z testowanych materiałów.

Wartość prądu tunelowania można przedstawić następująco:

$$i \propto e^{-2Ks}$$
 (1.11)

gdzie $K = (2m\varphi/\hbar^2)^{1/2}$

W celu uzyskania pełnego równania umożliwiającego obliczenie wartości prądu tunelowania w równaniu (1.11) należy jeszcze uwzględnić strukturę elektronową obu powierzchni, różnice w funkcjach prac wyjścia elektronów, zależność gęstości elektronowej od struktury krystalograficznej, kształt obu powierzchni oraz rzeczywisty potencjał pomiędzy powierzchniami.

Dla jednej powierzchni płaskiej, a drugiej w kształcie ostrza Tersoff i Hamann wykazali, że równanie opisujące prąd przybiera postać

$$i = 32\pi^{3}\hbar^{-1}e^{2}V\varphi_{0}^{2}D(E_{\rm F})r^{2}K^{-4}e^{2KR}\Sigma|\Psi_{\rm v}(r_{0})|^{2}\delta(E_{\rm v}-E_{\rm F})$$
(1.12)

przy czym: $E_{\rm F}$ oznacza energię Fermiego, $E_{\rm v}$ – energię stanu funkcji Ψ powierzchni płaskiej (próbki), $D(E_{\rm F})$ jest gęstością stanów na poziomie Fermiego drugiej powierzchni (ostrza), r – promieniem ostrza, r_0 – pozycją środka krzywizny ostrza określonej przez (s + R).

Garcia wykazał (1983), że skomplikowaną postać równania można dla potrzeb porównania doświadczenia z teorią uprościć do wyrażenia

$$i = A \frac{V}{s} \sqrt{\varphi} \cdot e^{-B\sqrt{\varphi s}}$$
(1.13)

w którym

$$A = \left(\frac{2\pi e}{h}\right)^2 \quad \text{oraz} \quad B = \frac{2\pi\sqrt{2m}}{h} \tag{1.14}$$

W równaniu (1.13) praca wyjścia φ jest zależna od od szerokości bariery s i można ją obliczyć na podstawie wzoru

$$\varphi(s) = \varphi_0 - \frac{\alpha}{d} \tag{1.15}$$

w którym

$$\alpha \cong 9,97 \text{ eV/Å}$$
 $d \cong s - 1,5 \text{ Å}$

Ważnym parametrem każdej mikroskopii jest jej rozdzielczość pozioma, L_{eff} , czyli wymiar najmniejszego rozróżnialnego elementu znajdującego się na badanej powierzchni. W mikroskopii STM rozdzielczość ta jest określona wielkością

prądu tunelowania i zależność tę można przedstawić następująco dla promienia ostrza r = 0:

$$i = \frac{\pi}{4} \cdot L_{\text{eff}}^2 \cdot j(r=0)$$
 (1.16)

Parametr j(r = 0) jest wartością prądu tunelowania dla układu jednej powierzchni.

Korzystając z przytoczonych uprzednio zależności, można sformułować równanie opisujące przybliżoną rozdzielczość poziomą:

$$L_{\rm eff} \cong \frac{\pi}{2} \sqrt{\frac{d+r}{k}}$$
(1.17)

w którym

$$k = \frac{2\pi}{h} \sqrt{2m\varphi_0} \tag{1.18}$$

Uwzględniając wartości liczbowe w równaniach (1.13)–(1.18), można otrzymać proste wyrażenie opisujące rozdzielczość poziomą (w Å) mikroskopii STM:

$$L_{\rm eff} = 1.7 \cdot (r + s - 1.5)^{1/2} \tag{1.19}$$

1.2. Technika AFM

Działanie mikroskopu sił atomowych (AFM) polega na próbkowaniu oddziaływań występujących pomiędzy dwoma obiektami. Na poziomie atomowym głównymi rodzajami oddziaływań są oddziaływania van der Waalsa, oddziaływania elektrostatyczne i oddziaływania chemiczne (rys. 1.2).

Rys. 1.2. Zależność międzyatomowych sił odpychania i przyciągania od odległości

Oddziaływania van der Waalsa między ostrzem i próbką, wynikające z oddziaływań dipolowych i polaryzowalności, można określić jako

$$E_{\rm vdW} = -\frac{A_{\rm H}r}{6s} \tag{1.20}$$

przy czym $A_{\rm H}$ oznacza stałą Hamakara zależną od polaryzowalności oraz elektronowej gęstości próbki i dźwigni, r – promień ostrza dźwigni, a s – odległość pomiędzy próbką i ostrzem dźwigni.

Oddziaływania elektrostatyczne wynikające z oddziaływań ładunków elektrycznych można przedstawić następująco:

$$F = -\frac{\pi\varepsilon_0 r V^2}{s} \tag{1.21}$$

gdzie V jest różnicą potencjałów pomiędzy dwoma obiektami, a ε_0 – względną przenikalnością elektryczną.

Oddziaływania chemiczne bliskiego zasięgu, prowadzące do powstania wiązań, można podzielić na dwa rodzaje:

a) potencjał Morse'a:

$$E_{\rm M} = E_{\rm bond} \Big[e^{-2\kappa(s-\delta)} - 2e^{-\kappa(s-\delta)} \Big]$$
(1.22)

gdzie δ jest najmniejszą odległością między nieruchomymi cząsteczkami, $E_{\rm bond}$ – energią wiązania cząsteczek odległych o 2^{1/6} δ , a κ – odległością zaniku oddziaływania;

b) potencjał Lennarda-Jonesa (L-J):

$$E_{\rm L-J} = 4E_{\rm bond} \left(\frac{\delta^{12}}{s^{12}} - \frac{\delta^6}{s^6} \right)$$
(1.23)

Wartość omawianych oddziaływań wynosi od 1 nN do 10 nN, δ odpowiada minimum potencjału.

Poza wymienionymi grupami oddziaływań, związanymi ze strukturą chemiczną, należy pamiętać o występujących na poziomie atomowym oddziaływaniach spotykanych również na poziomie makroskopowym, a mianowicie o tarciu, lepkości, oddziaływaniach magnetycznych oraz grawitacyjnych.

1.3. Zastosowanie i oprzyrządowanie technik STM i AFM

Efekt tunelowania wykorzystano praktycznie już w 1958 r. (Esaki, Giaver, Fisher, Josephson) w spektroskopii tunelowania (Nagroda Nobla w 1973 r.) oraz w mikroskopie tunelowania w 1981 r. (Binning, Rohrer, Gerber, Weibel), za którego konstrukcję przyznano Nagrodę Nobla w 1986 r. Mikroskop AFM na bazie mikroskopu STM skonstruowano w połowie lat osiemdziesiątych ubiegłego wieku (Binning, Quate).

1.3.1. Technika STM

Efekt tunelowania można zaobserwować tylko wtedy, gdy dwa przewodniki lub półprzewodniki zostana zbliżone do siebie na odległość atomowa. Jeden z tych obiektów jest badaną próbką, drugi zaś detektorem elektronów, czyli prądu. Powinno to być ostrze, najlepiej o średnicy jednego atomu (cf. równania w części teoretycznej). Kolejnym elementem układu jest miernik prądu o wysokiej czułości, zdolny mierzyć prąd rzędu pikoamperów. Aby otrzymać obraz badanej próbki, a nie pomiar punktowy, potrzebny jest system do przesuwania jednego z dwóch przewodników, tak zwany skaner, co umożliwia pomiar prądu w różnych miejscach powierzchni. Dopełnieniem układu jest oczywiście system rejestrujący zebrane dane i przekształcający wartości prądu na obraz i właściwości powierzchni zgodnie z równaniami (1.12)–(1.19). W skrócie można powiedzieć, że wiekszy prąd oznacza mniejszą odległość, czyli wyższy element na powierzchni, np. wystajacy atom. Możliwe jest wiec badanie struktury krystalicznej i morfologii (mikroskopia tunelowania). Ten sam efekt może też wynikać ze zmiany oddziaływań związanych z różnicami w pracy wyjścia elektronu z różnych miejsc powierzchni badanej próbki. Możliwe jest więc badanie właściwości fizykochemicznych próbki (spektroskopia tunelowania). Mikroskop tunelowania (rys. 1.3) rejestruje więc nastepujaca zależność:

$$i = f(s, V, \varphi) \tag{1.24}$$

Skaner w mikroskopach STM/AFM jest wykonany z materiału piezoelektrycznego. Piezoelektryki odznaczają się wysoką odtwarzalnością zmiany wymiarów pod wpływem potencjału elektrycznego. Skanerem w pierwszych mikroskopach STM były trzy kryształy piezoelektryczne umożliwiające i kontrolujące zmianę

Rys. 1.3. Schemat mikroskopu tunelowania. Z prawej strony pokazany jest rurkowy kryształ z materiału piezoelektrycznego

położenia w kierunkach x, y i z (rys. 1.3). Obecnie stosuje się najczęściej kryształy rurkowe podzielone na sektory (rys. 1.3, prawa strona). Do przeciwległych sektorów przykłada się potencjały o takich samych wartościach, lecz przeciwnych znakach. Po przyłożeniu napięcia odpowiedni sektor wydłuża się lub skraca, przechylając igłę lub próbkę zamocowaną na jego końcu.

Nasuwa się pytanie: jakie napięcie musi być zastosowane, jeśli oczekuje się przesunięć rzędu wymiarów atomowych? Zmianę wymiaru piezoelektryków rurkowych Δl (w Å) można obliczyć na podstawie zależności

$$\Delta l = B \cdot V \cdot l/d \tag{1.25}$$

w której V oznacza napięcie w woltach, l – długość w milimetrach, d – grubość w milimetrach, a B – stałą zależną od materiału piezoelektrycznego, która dla materiału PZT-5A wynosi –1,73 Å/V.

Łatwo jest więc oszacować, że stosowanymi napięciami mogą być napięcia łatwe do zmierzenia, rzędu miliwoltów.

Na rysunku 1.4a przedstawiony jest przykładowy obraz STM sieci atomowej grafitu, a na rysunku 1.4b obraz obliczony z wykorzystaniem teorii LDOS (ang. *Local Density of States*). Porównanie tych obrazów pokazuje doskonałe odwzorowanie techniką STM teoretycznych przewidywań struktury atomowej grafitu.

Rys. 1.4. Obraz STM powierzchni grafitu: a) zdjęcie STM, 2 nm \times 2 nm, b) obraz obliczony zgodnie z teorią LDOS. Odległości międzyatomowe zależnie od kierunku to 2,46 Å i 1,42 Å. Wrysowany romb przedstawia komórkę podstawową

1.3.2. Technika AFM

Na rysunku 1.5 przedstawiony jest schemat mikroskopu sił atomowych. Zasadniczą różnicą pomiędzy mikroskopem STM a mikroskopem AFM jest rodzaj detekcji. W przypadku mikroskopu AFM mierzy się oddziaływania, czyli konieczny jest pomiar sił. Pomiar polega na określeniu wielkości ugięcia dźwigni